Contrast response in visual cortex: quantitative assessment with intrinsic optical signal imaging and neural firing.
نویسندگان
چکیده
While previous studies showed that intrinsic optical signals spatially correspond with electrophysiological responses in mammalian visual cortex, the quantitative correspondence of their response strengths is open to question. Measurement of both signals' strength as functions of visual stimulus contrast provides an opportunity for quantitative comparison. Towards that end, the spatial and temporal properties of the optical signal impose important constraints upon quantification of its strength. We used intrinsic optical signal imaging and single unit recording to measure responses to drifting gratings at contrasts ranging from 10-80% in cat area 18. We calculated the average difference images for pairs of oppositely moving, or orthogonally oriented, gratings at each contrast and evaluated three different methods for quantifying optical signal strength. After about 2.5 s, the spatial patterns of optical images and the time course of their strength were contrast-invariant. This "space-time-contrast separability" for optical response implies a spatial uniformity of the optical contrast response functions, provides an objective basis to guide temporal averaging of optical signals, and validates a scalar metric of optical signal strength. Optically measured contrast response functions increase monotonically and saturate at high contrasts, qualitatively resembling those from single units. However, quantitative comparison reveals a nonlinear relationship with neural firing, such that the optical response reaches half of its maximum when the neural response has reached only around 20% of its maximum. This relationship suggests that intrinsic optical signals are relatively more sensitive to weak signals than neural firing.
منابع مشابه
Repeatability of Detecting Visual Cortex Activity in Functional Magnetic Resonance Imaging
Introduction As functional magnetic resonance imaging (fMRI) is too expensive and time consuming, its frequent implementation is difficult. The aim of this study is to evaluate repeatability of detecting visual cortex activity in fMRI. Materials and Methods In this study, 15 normal volunteers (10 female, 5 male; Mean age±SD: 24.7±3.8 years) attended. Functional magnetic resonance images were ob...
متن کاملPulsed infrared light alters neural activity in rat somatosensory cortex in vivo
Pulsed infrared light has shown promise as an alternative to electrical stimulation in applications where contact free or high spatial precision stimulation is desired. Infrared neural stimulation (INS) is well characterized in the peripheral nervous system; however, to date, research has been limited in the central nervous system. In this study, pulsed infrared light (λ=1.875 μm, pulse width=2...
متن کاملA Quantitative Investigation on the Effect of Edge Enhancement for Improving Visual Acuity at Different Levels of Contrast
Background: The major limitation in human vision is refractive error. Auxiliary equipment and methods for these people are not always available. In addition, limited range of accommodation in adult people when switching from a far point to a near point is not simply possible. In this paper, we are looking for solutions to use the facilities of digital image processing and displaying to improve ...
متن کاملSpatiotemporal precision and hemodynamic mechanism of optical point spreads in alert primates.
In functional brain imaging there is controversy over which hemodynamic signal best represents neural activity. Intrinsic signal optical imaging (ISOI) suggests that the best signal is the early darkening observed at wavelengths absorbed preferentially by deoxyhemoglobin (HbR). It is assumed that this darkening or "initial dip" reports local conversion of oxyhemoglobin (HbO) to HbR, i.e., oxyge...
متن کاملOptical intrinsic signal mapping of rod- and cone-mediated visual cortex responses in mice
We used optical imaging of intrinsic signals to study visual cortex responses in three mouse strains: wild-type (C57BL/6J), a strain with only rod function (cpfl1), and a strain with only cone function (rho(-/-)). A stationary flicker light stimulus with intensity ranging from 10(8.6) to 10(15.5) photons/cm2/s was used. We found that the intrinsic signal patterns exhibited stimulus intensity-de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 26 2 شماره
صفحات -
تاریخ انتشار 2005